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The wide occurrence of halogenated medium-sized 
cyclic ethers in several marine natural products isolated 
predominantly from a variety of Laurencia species has 
prompted the development of a number of elegant 
synthetic Notwithstanding a few notable 
accomplishments of successful total syntheses: however, 
there remains a paucity of general methods for the 
synthesis of medium-sized heterocycles and carbocycles. 
We have recently developed a new, general strategy for 
the stereoselective construction of functionalized medium- 
sized heterocycles and carbocycles by taking advantage 
of the [4 + 31 cycloaddition of cyclic oxyallyls and related 
 allyl^.^ As a preliminary study in the area of the oxocane 
marine natural products, we report herein an enantiose- 
lective synthesis of (+)-cis-lauthisan (l)Y 

RO Ho+ 0 

when x = o n  
[4 + 31 
cycloaddition 

0 

Our synthetic strategy utilizes the [4 + 31 cycloadduct 
2 to generate the oxocane ring with the requisite cis-2,8- 
side chains (Scheme l).8,g The known starting material 
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2 is readily available (73-82%) from either the Schmid 
cycloaddition of 3-chloro-2-pyrrolidinocyclohexene or the 
Fohlisch cycloaddition of 2-chlorocyclohexanone with 
f ~ r a n . ~ - l l  Cycloadduct 2 was first converted to diol 6 by 
standard transformations. Thus, LAH reduction of ke- 
tone 2 gave exclusively endo alcohol 3, which was then 
protected as the TBS ether 4 in 97% overall yield. 
Subsequent ozonolysis, NaB& reduction, and acetylation 
afforded diacetate 5 in 90% yield. After the keto group 
was restored at the bridge in a straightforward manner, 
hydrolysis gave rise to diol 6 in 89% overall yield. 

At this juncture the enzymatic asymmetrization of the 
meso diol 6 was accomplished most conveniently by the 
use of crude Amano PS-30 lipase in isopropenyl acetate 
to give the mono acetate 7, [ c ~ I ~ ~ D  -11.9’ (c 9.5, CHCld, 
in 76% yield.12 For determination of enantiomeric purity, 
7 was converted by straightforward functional group 
manipulations (93% overall yield) to alcohol 9, the ee of 
which was shown to be 85% by HPLC analysis (using a 
Daicel OD column). The assignment of the absolute 
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mylation with neat n-BusSnH, alcohol 13 was obtained 
in 63-75% overall yield and in 85% ee.14 

The final leg of the synthesis of 1 was completed by 
the installation of the side chains employing the proce- 
dure of Ko t s~k i .~"J~  Thus, treatment of 13 with TfzO, 
followed by pentylmagnesium bromide in the presence 
of CUI, furnished the desired compound 14 in 87% yield. 
Following desilylation (n-BaNF) of 14, the repetition of 
the Kotsuki protocol on alcohol 15 with MeMgBr afforded 
the target compound, (+)-1, in 79% yield. The physical 
and spectral data of synthetic (+)-l (85% ee) were in 
excellent agreement with literature values. 

In summary, we have developed a new, efficient 
synthetic approach for the enantioselective preparation 
of medium-sized cyclic ethers. Our synthesis further 
underscores the potential of the hitherto little-explored 
[4 + 31 cycloaddition of cyclic oxyallyl or aminoallyl 
species. Further synthetic applications to structurally 
complex oxocene natural products are currently in 
progress. 
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configuration of 9 was tentatively made by analogy to 
structurally related exampleslZc and was ultimately 
confirmed by its conversion to (+)-cis-lauthisan (1). 

Our attention was next focused on the oxidative 
cleavage of the keto bridge to unmask the 2,B-cis-di- 
substituted oxocane ring. Sudrez cleavage by the action 
of PhI(0Ac)n and IZ in refluxing benzene resulted in a 
facile formation of iodo lactones 10, as a 2:l  mixture of 
diastereomers, in 8045% yield.13 Treatment with n-Bw- 
SnH smoothly gave lactone 11 in 76% yield (Scheme 2). 
Subsequent excision of the lactone functionality was then 
achieved by the iteration of Sudrez cleavage on the 
corresponding lactol to furnish the diastereomeric iodo- 
formates 12. Upon concomitant deiodination-defor- 
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